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ABSTRACT

Objective: Serious games have shown promise as therapeutic tools for children with different special needs. However, 
understanding how children feel and participate in a game is also important. This study used machine learning 
(ML) methods to classify stress in children with different special needs and their participation in serious game-based 
therapies.

Methods: This cross-sectional observational study was conducted at the Pediatric Rehabilitation Laboratory of the 
Department of Occupational Therapy between March and May 2023. Physiological signals such as blood volume pulse, 
electrodermal activity, and skin temperature were collected from 25 children with obstetric brachial plexus injury, dys-
lexia, intellectual disabilities, and typically developing children during game therapy. Using these physiological signals, 
12 ML models were applied to classify children’s stress and participation. Descriptive statistics (mean, SD, frequencies) 
were used to summarize participant characteristics. Model performance was evaluated using metrics such as accuracy, 
precision, recall, and F1 score.

Results: The results demonstrate that the k-nearest neighbor (KNN) classifier after an autoencoder resulted in the high-
est F1 scores of 66% and 63% for stress and participation classification, respectively. Furthermore, the eXtreme Gradient 
Boosting (XGBoost) model achieved the highest F1 scores of 91% and 86% for the no-stress and no-participation clas-
sifications, respectively. When both minority and majority classes were taken into consideration, using KNN following 
an autoencoder yielded better results with average F1 scores of 68% and 65% for stress and no-stress and participation 
and no participation, respectively.

Conclusion: This study shows that ML methods are effective in classifying children’s stress and engagement states using 
physiological signals.

Keywords: Machine learning, physiological, rehabilitation, stress

Introduction

The repetition and motivation of the patients during rehabilitation exercises are important issues during 
therapy sessions. Serious games, and in particular exergames in rehabilitation, are currently getting atten-
tion because they can motivate, engage, and increase patients’ adherence to their treatment. Furthermore, 
serious games have been shown to enhance cognitive functions and motor skills, such as hand-eye coor-
dination, attention, and visual perception.1,2 Serious games have been used to improve sensorimotor 
function and motivation in people with cerebral palsy.3 Additionally, serious game-based therapies have 
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What is already known on this 
topic?

•	 Serious games are commonly used in 
rehabilitation to support motivation 
and participation in children with 
special needs.

•	 Stress and participation levels 
can affect the effectiveness of  
rehabilitation.

•	 Machine learning methods have 
been applied to stress detection 
using physiological signals in various 
populations.

What this study adds on this 
topic?

•	 This study demonstrates how stress 
and participation levels in children 
with special needs can be detected 
using data from a wearable device 
during game-based rehabilitation.

•	 Machine learning methods have 
proven effective in classifying chil-
dren’s stress and participation levels 
based on physiological signals.

•	 The outcomes derived from process-
ing physiological signals can guide 
therapists in selecting games and 
rehabilitation activities better suited 
to each child’s needs.

Content of this journal is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.
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also been used for children with brachial plexus,4 dyslexia,5,6 and intel-
lectual disability and enhance the motor and cognitive abilities of chil-
dren with special needs.7,8 Note that these children’s motivation and 
participation are always important during these therapies.3

Emerging game-based rehabilitation technologies can potentially 
improve child participation in repetitive task practice and enhance 
function.8 However, children may lose interest if they are stressed dur-
ing game-based therapies, so detecting and managing stress during 
therapy exercises is crucial for better outcomes and monitoring the 
patient during the treatment.9 Therefore, it is important to consider 
both the children’s performance and their stress levels, and participa-
tion in the game to find suitable serious games for each child and 
improve the effectiveness of serious game-based therapies. It is good 
to understand if the children are stressed and if they participate or do 
not participate, and then modify the serious game difficulty to reduce 
their stress levels and increase their participation. Understanding 
stress levels and participation patterns can guide the development of 
personalized interventions for children with different special needs.10

Emotion or stress recognition methods use facial expressions, speech, 
and posture. Various emotion/stress recognition studies were devel-
oped for typically developing children and children with different 
special needs.9,11–17 The emotions of children diagnosed with and 
without dyslexia have been recognized using physiological signals and 
statistical methods.11 A stress detection method has been developed 
for children with autism spectrum disorder (ASD) using electrodermal 
activity (EDA) and blood volume pulse (BVP) signals.12,16 The heart rate 
of children with and without neurodevelopmental disorders has also 
been examined under stress conditions.13 The emotions of children 
with ASD have been classified using physiological signals.14 The valence 
of children with ASD and typically developing children has been classi-
fied using an electrocardiogram (ECG) signal.15

Statistical, mathematical, and signal-specific features have been 
extracted from the BVP, EDA, and skin temperature (ST) physiological 
signals for use in machine learning (ML) models to classify emotions 
and stress.18-23 Random forest (RF), neural network, support vector 
machines (SVM), and Naive Bayes (NB) classification methods have 
been used to classify 4 emotions, arousal, and valence.18 Furthermore, 
the k-nearest neighbor (KNN), SVM, and RF have been used previously 
to classify arousal and valence.20 Furthermore, KNN, SVM, decision tree 
(DT), support vector regression, ensemble learning, linear discrimina-
tion, and Gaussian process regression methods have been used to clas-
sify stress in.21 Random forest, KNN, gradient boosting, and adaptive 
boosting (AdaBoost) methods have been utilized for emotion classifica-
tion.23 Emotions (negative, not negative, unknown) have been classified 
using RF24 in children with profound intellectual and multiple disabili-
ties. The KNN and ensemble classifier algorithms have been used for 
valence recognition in children with ASD. Support vector machines, RF, 
and artificial neural networks (ANN) classifiers have been utilized for 
emotion classification in children with hearing disabilities.17

This study uses the publicly available AKTIVES (Duygu Durum ve 
Vücut Hareketleri Tanıma Destekli Akıllı Aktivite ve Egzersiz Sistemi, 
Smart Activity and Exercise System Supported by Emotion and Body 
Movement Recognition) dataset to develop stress/no-stress and partici-
pation/no-participation models using ML methods.25 The data includes 
the physiological signals (BVP, EDA, and ST) and facial expressions of 25 
children with different special needs and typically developed children, 
which are collected during serious game-based therapy.25 Children’s 
stress has previously been identified through facial expressions using 
this dataset.9 This study is the first to develop stress/participation 
detection models among children with diverse special needs during 

serious gaming sessions using physiological signals (BVP, EDA, and ST) 
within the AKTIVES dataset. In the dataset, the stress and participation 
classes were minority classes (13% stress and 20% participation). The 
synthetic minority oversampling technique (SMOTE) was applied to the 
dataset to address the imbalanced data issue. This study extracted 59 
statistical and signal-specific features from the collected BVP, EDA, and 
ST signals. Twelve different models using eXtreme Gradient Boosting 
(XGBoost), ANN, SVM, logistic regression (LR), KNN, DT, NB, RF, autoen-
coder, and metric learning were used to develop stress/no-stress and 
participation/no-participation classification models. The accuracy, F1 
score, precision, and recall were calculated to determine the best ML 
methods for the classification of stress/no-stress and participation/no-
participation. This study aims to leverage ML methods to classify stress 
levels and participation in children with varying special needs during 
serious game-based therapy. The goal is to provide personalized ther-
apy insights that address the unique challenges faced by these chil-
dren, enhancing engagement and optimizing therapeutic outcomes. 
The research questions are:

•	 How effectively can ML algorithms classify stress levels in children 
with different special needs during serious game-based therapy 
sessions?

•	 To what extent can these algorithms assess and categorize children’s 
levels of participation?

Materials and Methods

Twenty-five children with special needs who accepted the informed 
consent form were included in the study. Ethical approval was obtained 
from the Research Ethics Committee of Istanbul Medipol University 
on February 18, 2021 (Approval No: E-10840098-772.02-6580). The 
dataset collected and published by the authors of this study includes 
physiological signals, BVP, EDA, and ST of 25 children with different 
special needs and typically developed.25 Three of them were children 
with obstetric brachial plexus injury, 7 of whom were children with 
intellectual disabilities, 4 of whom were children with dyslexia, and 
11 of whom were typically developing children. The inclusion criteria 
required a diagnosis of obstetric brachial plexus injury for children 
classified under Narakas Classification Group I, intellectual disability 
for children identified with Mild Intellectual Disability, or dyslexia, and 
age between 5 and 14 years. Children with other chronic diseases were 
not included in this study. The mean age of the children (10 boys and 
15 girls) was 10.2 ± 1.27 years.

Children played the Becure CatchAPet (becureglobal.com) (BC) and 
Becure LeapBall (becureglobal.com) (BL) games. The BC game aims 
for children to use wrist flexion/extension movements. The BL game 
aims for children to hold and release the ball using grasping move-
ments. When the serious game ended, the children looked at a black 
screen for 30 seconds. In this order, each child was asked to play BC 
and BL games (Figure 1). Children and parents were informed about 
the procedure, and parents provided written consent. To familiarize 
the children with the games, they played for 2-3 minutes before the 
experiment. Instructions were given to avoid unnecessary movements 
and to cover their faces. The experiment began with a 30-second base-
line on a black screen. Then, children played “Becure CatchAPet” or 
“Becure LeapBall” for 420 seconds. Afterward, the black screen was 
shown again for 30 seconds, and the games were repeated. All games 
were played on a fixed computer, with the E4 wristband securely 
placed on the child’s arm to ensure accurate data collection.

The physiological signals (BVP, EDA, and ST) were collected with an 
Empatica E4 smart bracelet. E4 has previously been used to detect 
stress.23,26 Furthermore, a video camera captured the facial expression 
data (Figure 2). Every 10 seconds, 3 experts observed the children and 
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noted whether they thought they were stressed and whether they par-
ticipated or did not participate in the game. Experts evaluated not only 
the physical presence of the children but also their active and volun-
tary engagement in the gameplay. Specifically, children were labeled 
as “participation” if they actively and willingly interacted with the 

game tasks, and as “no participation” if they appeared to engage pas-
sively or only due to external encouragement. Experts used the body 
language of children to decide between stress/no-stress and participa-
tion/no-participation. All 3 experts were occupational therapists with 
at least 2 years of experience. Each of the 3 experts was blinded to the 
annotation of the others. For each time slot, each expert indicated 
whether the children were stressed and whether they participated in 
the game. If at least 2 experts indicated that a child was stressed, that 
time period was labeled as “stress,” otherwise, it was labeled as “no 
stress.” Similarly, if at least 2 experts indicated that a child participated 
in the play, then the time period was labeled as “engagement”, other-
wise, it was labeled as “no engagement.” In this way, binary categorical 
variables were obtained based on expert ratings rather than continu-
ous values.

The dataset has 3 main parts: data processing, feature extraction, and 
classification for stress and participation detection (Figure 3).

Data Processing and Statistical Analysis

Physiological Data Collection
The EDA sensor was used to record skin conductivity data at a sampling 
rate of 4 Hz, whereas the photoplethysmograph (PPG) sensor was used 
to acquire BVP data at a sampling rate of 64 Hz. An infrared thermo-
pile was used to collect the ST data at a sampling rate of 4 Hz. Finally, 

Figure 1.  Becure CatchAPet and Becure LeapBal.

Figure 2.  Experimental setup.
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the EDA and ST sensor data were upsampled to 64 samples per second 
to ensure that all the sensors captured equal samples.

Physiological Data Processing
All the experimental setups were combined into a single device for 
data synchronization. The collection time of the physiological signals 
was synchronized with the device clock using E4 Manager software. 
The E4 data were saved in Unix timestamp format. Synchronous time-
stamps with the stimuli were gathered from each device during the 
experiment.

A sixth-order Chebyshev II filter (Stop Band Attenuation Rs = 18 dB and 
Normalized Stopband Edge Frequency Wn = 0.1 Hz), which was previ-
ously used for the BVP signal,27 was applied to pre-process the BVP 
signal. A fifth-order Savitzky–Golay filter,22 which was previously used 
to filter EDA signals, was selected for this study. The amplitude level 
of the physiological signal can differ in 2 individuals who express the 
same emotions.18 Therefore, the amplitude of the BVP and EDA signals 
was normalized between 0 and 100 to overcome this difference. In this 
study, the raw data from the ST signal were used.

After filtering and normalization, the collected physiological signals 
were windowed as 10-second arrays with 5-second overlaps for feature 
extraction. First, the information from all sensors was fused at the data 
level using multisensor data fusion, and then data vectors (640 × 3) 
were produced for each 10-second slice.

Feature Extraction
The 59 features previously used for emotion recognition18,19,21,23,28 were 
extracted from the BVP, EDA, and ST signals for each 10-second time-
stamp. The EDA signal was separated into tonic EDA (SCL) and phasic 
EDA (SCR). Statistical and mathematical features were extracted from 
BVP, EDA, SCL, SCR, and ST signals (Table 1). The data-specific features, 
which were the number of positive peaks (BVP positive peak) related 
to systolic points, the number of negative peaks (BVP negative peak) 

related to diastolic points, the maximum distance between peaks 
(BVP peak maximum distance), and the minimum distance between 
peaks (BVP peak minimum distance) from the BVP signal, were also 
extracted.

Classification
Twelve different models were developed using ML methods for stress 
and participation detection. Twenty percent of the data was set aside 
for testing, and the data was selected equally for each child.

eXtreme Gradient Boosting (XGBoost) was selected as the first model in 
this study because it can increase accuracy through various arrange-
ments. The XGBoost algorithm was configured with a learning rate of 
0.0001, maximum depth of 6, minimum sample split of 2, 200 esti-
mators, and a subsample ratio of 0.8. Subsequently, the SMOTE was 
applied to the dataset to address the imbalanced data issue before 
using the XGBoost classifier (model 2). In the dataset, the stress and 
participation classes were minority classes (13% stress and 20% par-
ticipation). New samples were synthesized from existing data using 
SMOTE. The SMOTE uses minority class samples and applies the KNN 

Figure 3.  Flow chart for stress/participation detection.

Table 1.  Statistical and Mathematical Features
Feature Explanation
Signal_zero_crossing Zero crossing of signal
Signal_mean Mean of signal amplitude
Signal_median Median of signal amplitude
Signal_min Minimum of signal amplitude
Signal_max Maximum of signal amplitude
Signal_skew Skewness of signal
Signal_kurtosis Kurtosis of signal
Signal_025 0.25 quantile of amplitude
Signal_075 0.75 quantile of amplitude
Signal_050 0.50 quantile of amplitude
Signal_095 0.95 quantile of amplitude
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approach to select the nearest neighbor randomly, and a random syn-
thetic sample is generated in the feature space. After applying SMOTE 
to the data, the XGBoost classifier was used to balance the data. The 
SMOTE was applied to the data before training the ANN model to bal-
ance the imbalanced data (Model 3). Furthermore, the KNN algorithm 
was applied for classification after metric learning (Model 4). In this 
study, the value of k was empirically determined to be 5, as it exhibited 
optimal performance.

Subsequently, an autoencoder (Figure 4) was used to train the SVM 
(Model 5). The autoencoder was trained using a minority class. The pri-
mary objective of autoencoder training is to reduce the reconstruction 
error, thus justifying the choice to undertake training using a singular 
class. As a result, the autoencoder yielded a low reconstruction error 
for no-stress/no-participation data but a high reconstruction error for 
abnormal data (minority class). At this point, outliers became apparent 
in the hidden layer, and the hidden layers of the proposed autoen-
coder structure were provided as input to the SVM model. In the pro-
posed autoencoder architecture, 4 fully connected layers were utilized 
for both the encoder and decoder. The hyperbolic tangent (tanh) was 
chosen as the activation function for these layers. Furthermore, the 
rectified linear unit activation function was employed for the latent 
layer, and a linear activation function was used for the output layer.

Autoencoder structures were also provided as input to the other mod-
els: LR (Model 6), extreme gradient boosting (XGBoost) (Model 7), DT 
(Model 8), KNN (Model 9), Naive Bayes (NB) (Model 10), RF (Model 11), 
and ANN (Model 12).

Results

The accuracy, F1 score, precision, and recall metrics are presented for 
the stress/participation and no-stress/no-participation target variables 
(Table 2). The F1 score was between 30% and 91% for the stress/no-
stress model. The F1 score ranged between 18% and 86% when evalu-
ating the participation/no-participation models. Higher F1 scores were 
observed in the no-stress and no-participation models because experts 

annotated more non-stress and non-participation than stress and 
participation.

The autoencoder + KNN model (Model 9) yielded the highest F1 scores 
for both stress (66%) and participation (63%) (Table 2). Model 9 selected 
only the data belonging to the no-stress and no-participation groups 
from the dataset and trained it with an autoencoder to determine stress 
and participation. Data points for stress/no-stress and participation/no-
participation were generated by reconstructing the model using the 
hidden layers of the autoencoder. The generated model weights were 
then input into the ML models. This model was trained with KNN after 
the autoencoder. The autoencoder architecture used in this study was 
designed to augment the predictive accuracy of the minority classes of 
stress and participation. Observations revealed that models integrat-
ing this autoencoder architecture demonstrated enhanced F1 scores for 
both minority classes. The use of the autoencoder structure to improve 
predictions for minority classes was distinctly evident; models incorpo-
rating this structure exhibited notable improvements.

Furthermore, the SMOTE method did not provide a significant improve-
ment. The SMOTE method generates synthetic samples through inter-
polation among existing instances of minority classes. Consequently, 
this model could lead to an overfitting issue, wherein it becomes 
excessively specialized in identifying synthetic samples solely, impair-
ing its ability to generalize to unseen data effectively.

The study reveals that the autoencoder + KNN model (Model 9) out-
performs others in predicting stress and participation by effectively 
addressing class imbalance, achieving the highest F1 scores for these 
minority classes. Although SMOTE was used to tackle class imbalance, 
it did not significantly enhance performance and posed overfitting 
risks. Conversely, XGBoost excelled in classifying the majority classes (no 
stress, no participation) without SMOTE. These results suggest that while 
SMOTE may not always be beneficial, the autoencoder + KNN approach 
provides a promising solution for improving predictions in imbalanced 
datasets. Future research should validate these findings with larger 
samples to better understand their generalizability and effectiveness.

Figure 4.  Autoencoder architecture.



6

Arch Health Sci Res. 2025;12:1-8

The XGBoost model (Model 1) was trained with the entire dataset, 
resulting in high F-scores of 91% for the no-stress and 86% for the 
no-participation classification (Tables 2 and 3). This model detected 
no stress and participation without utilizing the SMOTE method. 
The observation indicated that XGBoost achieved higher accuracy in 
predicting the majority classes (no stress, no participation) without 
applying SMOTE. Given that there was no need for improvement in 
predicting the majority classes, it was evident that the simpler XGBoost 
model yielded better results. When the autoencoder was not used, a 
significant difference was observed between the minority and major-
ity classes. The proposed autoencoder structure distinctly enhances 
the classification performance of the minority class, yielding optimal 
results for both classes and effectively addressing the imbalance issue 
within the dataset. Moreover, considering both minority (stress, par-
ticipation) and majority classes, it was better to use Model 9 (autoen-
coder + KNN), which distinctly separated both classes with an average 
F1 score of 68% for stress and no-stress and 65% for participation and 
non-participation, respectively (Table 2).

Discussion

This study developed stress/no-stress and participation/no-partic-
ipation detection models using ML methods for children with dif-
ferent special needs, which can be used during serious game-based 
rehabilitation. This study used publicly available labeled data (stress/
no stress and participation/no participation).25 The dataset included 

physiological signals collected from 25 children with special needs and 
typically developed children, where children played 2 serious games. 
Three experts observed the children and labeled the data to indicate 
whether they were stressed or not and whether they participated or 
not during the game. Various ML methods are used to develop stress/
no-stress and participation/no-participation models.

Physiological responses to various stimuli, such as stress, physical activ-
ity, and pain, can negatively affect physical and psychological health. 
Stress can affect the patient’s performance and reduce compliance 
with exercise programs.29 Therefore, detecting and managing stress 
during therapy exercises is crucial for better patient outcomes. Such 
mechanisms also improve patient outcomes and contribute to the 
effective monitoring of patients during home treatment.9 Emerging 
game-based rehabilitation technologies can potentially improve child 
participation in repetitive task practice and enhance function.8 The 
findings suggest that a personalized understanding of stress and par-
ticipation levels in children with different special needs can contrib-
ute to optimizing the frequency of therapy sessions. Practitioners can 
enhance the effectiveness of interventions by tailoring the therapeutic 
schedule to individual profiles. Evaluating children’s motivation and 
stress levels during rehabilitation has been emphasized previously.30 
Understanding the stress-response patterns of each child may aid 
therapists in determining the optimal session length to maximize 
engagement and minimize potential stressors. Thus, a personalized 
understanding of stress and participation levels in children with 

Table 2.  Evaluation Metrics: Stress and No-Stress

​Model Classifier SMOTE Accuracy
Average F1 

Score
Stress No Stress

F1 Score Precision Recall F1 Score Precision Recall
Model 1 XGBoost No 0.84 0.61 0.30 0.37 0.25 0.91 0.89 0.94
Model 2 XGBoost Yes 0.81 0.64 0.39 0.34 0.45 0.89 0.91 0.87
Model 3 ANN Yes 0.78 0.64 0.40 0.32 0.55 0.87 0.92 0.82
Model 4 Metric Learning + KNN Yes 0.65 0.54 0.34 0.22 0.72 0.77 0.94 0.65
Model 5 Autoencoder + SVM No 0.63 0.63 0.63 0.58 0.70 0.63 0.70 0.58
Model 6 Autoencoder + LR No 0.58 0.56 0.54 0.52 0.56 0.58 0.61 0.56
Model 7 Autoencoder + XGBoost No 0.63 0.63 0.63 0.58 0.68 0.63 0.68 0.59
Model 8 Autoencoder + DT No 0.61 0.59 0.49 0.60 0.42 0.68 0.61 0.76
Model 9 Autoencoder + KNN No 0.68 0.68 0.66 0.64 0.69 0.69 0.72 0.67
Model 10 Autoencoder + NB No 0.54 0.54 0.52 0.49 0.56 0.55 0.59 0.52
Model 11 Autoencoder + RF No 0.65 0.66 0.65 0.60 0.70 0.66 0.71 0.61
Model 12 Autoencoder + ANN No 0.49 0.49 0.54 0.46 0.66 0.43 0.56 0.35
ANN, artificial neural networks; DT, decision tree; KNN, k-nearest neighbor; LR, logistic regression; NB, Naive Bayes; RF, random forest; SMOTE, synthetic minority 
oversampling technique; SVM, support vector machines; XGBoost, eXtreme gradient boosting.

Table 3.  Evaluation Metrics: Participation and No Participation

Model Classifier SMOTE Accuracy
Average F1 

Score
Participation No Participation

F1 Score Precision Recall F1 Score Precision Recall
Model 1 XGBoost No 0.76 0.60 0.33 0.45 0.26 0.86 0.82 0.91
Model 2 XGBoost Yes 0.71 0.57 0.32 0.34 0.31 0.82 0.81 0.83
Model 3 ANN Yes 0.72 0.51 0.18 0.25 0.14 0.84 0.79 0.89
Model 4 Metric Learning + KNN Yes 0.67 0.65 0.55 0.45 0.72 0.75 0.86 0.66
Model 5 Autoencoder + SVM No 0.53 0.53 0.53 0.55 0.51 0.53 0.51 0.55
Model 6 Autoencoder + LR No 0.55 0.56 0.58 0.57 0.59 0.53 0.54 0.52
Model 7 Autoencoder + XGBoost No 0.60 0.60 0.61 0.62 0.60 0.59 0.58 0.61
Model 8 Autoencoder + DT No 0.60 0.60 0.57 0.64 0.52 0.62 0.57 0.68
Model 9 Autoencoder + KNN No 0.64 0.65 0.63 0.68 0.58 0.66 0.61 0.71
Model 10 Autoencoder + NB No 0.54 0.54 0.54 0.56 0.52 0.53 0.52 0.55
Model 11 Autoencoder + RF No 0.61 0.61 0.62 0.63 0.61 0.60 0.59 0.61
Model 12 Autoencoder + ANN No 0.61 0.61 0.59 0.65 0.54 0.63 0.58 0.68
ANN, artificial neural networks; DT, decision tree; KNN, k-nearest neighbor; LR, logistic regression; NB, Naive Bayes; RF, random forest; SMOTE, synthetic minority 
oversampling technique; SVM, support vector machines; XGBoost, eXtreme gradient boosting.
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different special needs can contribute to optimizing the frequency of 
therapy sessions.

The role of physiological signals, particularly EDA and ECG, in deter-
mining emotional states offers a significant advantage in rehabili-
tation processes. This study has developed models that utilize ML 
methods to detect stress and participation in children. The ability 
of the physiological signals to reflect emotional states has already 
been validated.31 The results obtained in this study demonstrate the 
potential and contribution of the ability to accurately detect stress 
and participation in the therapeutic processes of children. Emotional 
data were anonymized, and visual data were collected in compliance 
with ethical and data protection regulations. Real-world applications 
of these systems are important for identifying the effects of therapy 
beyond motivation. The easy use of these systems in real-time can 
help assess the effectiveness of treatments and therapist-patient com-
patibility. Some of the data used in this study, such as those from 
smartwatches, can be easily integrated in the future, simplifying fur-
ther use.

Delmastro et al32 focused on stress detection in older adults with mild 
cognitive impairment using wearable sensors and ML. They analyzed 
physiological signals such as heart rate variability, EDA, and ST with 
algorithms like RFs and AdaBoost, achieving 89% accuracy in stress 
detection. In contrast, this study targeted stress and participation 
classification in children with special needs (e.g., dyslexia, intellec-
tual disability) during serious game-based therapy. Signals like EDA, 
BVP, and ST were collected using the Empatica E4 wristband and ana-
lyzed through 12 ML models. Note that techniques such as SMOTE 
and class_weight are used to increase the representativeness of the 
minority class in imbalanced data sets in this study. However, oversam-
pling methods such as SMOTE change the data distribution by creating 
new synthetic samples from existing minority class samples. This can 
lead to overfitting of the model to certain patterns. Especially in com-
plex datasets, it can be observed that the synthetic data produced by 
SMOTE does not accurately reflect the real-world data. Similarly, the 
class_weight and scale_pos_weight parameters increase the error cost 
of the minority class, allowing the model to focus more on this class. 
However, such weighting methods can sometimes lead the model to 
overcorrect. When the model over-prioritizes recognizing the minority 
class, it can lead to increased false positive rates and lower overall 
accuracy. In this study, these methods have been tested, but the results 
showed a decrease in the model’s generalization ability. Instead, an 
approach with an autoencoder that better discriminates minority class 
instances and is more representative of the data distribution was more 
successful. Therefore, different techniques were chosen to ensure that 
the model learns in a balanced way for both minority and majority 
classes.

Autoencoder combined with KNN achieved F1 scores of 66% for 
stress and 63% for participation detection, while eXtreme Gradient 
Boosting (XGBoost) reached 91% and 86% for no-stress and no-partic-
ipation states. The KNN classifier provided a higher F1 score of 66% 
for stress and 63% for participation after the autoencoder method. 
In contrast, the XGBoost method achieved a maximum F1 score of 
91% for the no-stress group and 86% for the no-participation group. 
When considering both the minority classes (stress and participation) 
and the majority classes (no-stress and no-participation), the autoen-
coder after the KNN model is more effective. This model distinguishes 
between the classes, achieving average F1 scores of minority and 
majority classes of 68% for stress and no-stress and 65% for partici-
pation and non-participation. Specifically, in this study, the XGBoost 
method distinguishes stress and engagement states with high accu-
racy, which has also been noticed in the multimodal emotional 

recognition models that use physiological signals recorded in thera-
peutic settings.33 However, as emphasized, the limited information 
provided by a single physiological signal and the necessity to consider 
individual differences may impose some restrictions on the general-
izability of the findings from this study.34 Future research involving 
a more diverse sample with varied demographic characteristics and 
the combined use of multiple physiological signals can enhance the 
reliability and generalizability of the results.

Strengths and Limitations
The use of serious games demonstrated effectiveness in improving 
motor and cognitive functions in children with special needs, hereby 
enhancing therapeutic outcomes. The integration of physiological sig-
nals, such as electrodermal activity (EDA), blood volume pulse (BVP), 
and skin temperature (ST), builds on their established use in stress 
detection and emotional state classification in therapeutic contexts. 
Finally, the application of machine learning methods showed prom-
ise in recognizing stress and participation levels, suggesting potential 
for advancing individualized rehabilitation approaches. A key limita-
tion is the small, homogeneous sample of 25 children within a narrow 
age range, which restricts the generalizability of the findings. Future 
studies should involve larger, more diverse samples to enhance exter-
nal validity and assess the broader applicability of serious games and 
physiological signals in pediatric rehabilitation.

Conclusion

The proposed stress and participation model can be used to select suit-
able games for each child during therapy. Understanding stress and 
participation can help therapists choose games that align with each 
child’s needs and preferences to enhance therapeutic outcomes. In 
future work, the selected ML models will be integrated into a real seri-
ous game-based rehabilitation environment to adjust game difficulty 
depending on children’s stress and participation to increase their par-
ticipation and decrease their stress.

A key limitation of this study is the small, homogeneous sample of 
25 children with specific diagnoses and a narrow age range. Future 
research should involve larger, more diverse samples across regions, 
socioeconomic backgrounds, and age groups to improve generalizabil-
ity and validate the use of serious games and physiological signals in 
pediatric rehabilitation.
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